100% PRACTICAL RESEARCH PROGRAM ON

GENOMICS OF INFECTIOUS DISEASES

(Unveiling Pathogen Genomes: Navigating the Intricacies of Infectious Diseases through DNA Insights)

RESEARCH WORKSHOP AND PROJECT OUTLINE DURATION: MAXIMUM OF 3 MONTHS ONLY: 12 WEEKS

OUTLINES

- Introduction, aims and objectives of research workshop.
- Understanding the concept of population and comparative genome analysis to explore pathogenic bacteria
- Search for subject related research articles and study them relative to your study of interest
- Research proposal will entail 1st your pathogenic organism of interest to be studied, 2nd your special
 interest based on specific pathogenic functional capabilities of the bacteria relative to the host and
 3rd your research paper title you have in mind.
- We will treat a Practical session on **the fundamental of bioinformatics course** (what is bioinformatics, biomolecular data, data types, sequencing, file types, etc.) via a Video Drop.
- Submitting your research proposal
- Together, based on your previous research findings, we will Design a research project workflow for the entire study to be done.
- Introduction to all software tools and the entire pipelines, including installations, and their applications which we will be using during the research workshop

- Knowing the number of WGS samples to work with geographical specifications
- Individual organism genomes of interest on NCBI database will be searched such as fastq raw data and assembly genomes for research work.
- Processing raw reads and performing genome assembly of individual organism genomes of interest.
- Construct comparative general features via data table based on genome information which includes accession number, raw data size, sources, geographical regions platform, genomes type, layout, file types etc.
- Evaluation of the genome assembly results
- Plasmid prediction of all assembly genomes
- Prediction of a bacteria's pathogenicity towards human hosts.
- ToxFinder identifies genes involved in mycotoxin synthesis.
- Doing Comprehensive genome analysis of individual samples, including annotation, gene prediction, survival gene markers, etc.
- You need to do comprehensive genome analysis for other strains collected/retrieved as assembly fasta file from NCBI
- Commencing research paper write-up, relative to the organism of interest. Part 1 (introduction)
- Comprehensive Evaluation of comprehensive genome analysis of individual samples
- Genome sequence properties
- Construction of a comparative statistical table and figure of the functional genome properties
- Functional Genome categorization (GENOME MAP)
- Antibiotic resistant profiling (resistance genes, susceptibility genes, resistant mechanism, antibiotics class, functional or putative proteins...)
- Comparative AMR genes and result in data computation and visualizations (using a comparative approach)
- Comparative Resistant Mechanism and result in data computation and visualization
- Shared resistance genes between strains and result data computation and visualization
- Comparative Virulence factors and genes between strains and result data computation
- Shared specific genes and result data computation
- Drug targets and Protein Structures
- Identification of mobile genetic elements and their relation to antimicrobial resistance genes and virulence factors.
- Evolutionary study (phylogenomics tree) (Whole Genome)
- ANI analysis

- Pan/core genomics analysis (genome map) of selected genomes
- Comparative Genome Analysis (Last Alignment)
- Construction table/figure for the output results of **subsystem functional categorization**
- Research paper writing: part 2: materials and methods
- Visualization of all Computed result data (Heatmaps, Histogram, bar chart etc.)
- Research paper writing: part 3: finishing materials and methods and starting results writing (putting together all figures and tables) while combining all available work done.
- Evaluation and report writing from comparative results from previous analysis
- Research paper writing: part 4: detailed discussion starting from
 - 1. Insights from functional genomes properties
 - 2. Result writing for computed tables, figures etc
- Thorough evaluation of all work done Research paper writing: part 5: detailed discussion, this time for specific pathogenic investigations
- Thorough evaluation of all work done
- Research paper writing: part 6: finalizing discussion and making conclusion including references
- Finalizing all research project work done and remark