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Abstract
Antibiotic resistance genes (ARGs) and antimicrobial resistance elements (AMR) are novel environmental contaminants that 
pose a significant risk to human health globally. Freshwater contains a variety of microorganisms that might affect human 
health; its quality must be assessed before use. However, the dynamics of mobile genetic elements (MGEs) and ARG propa-
gation in freshwater have rarely been studied in Singapore. Therefore, this study used metagenomics to compare diversity, 
virulence factor composition, and ARG and MGE co-occurrence with bacterial communities in paired (n = 8) environmental 
freshwater samples. KneadData, FMAP, and Kraken2 were used for bioinformatics analysis and R (v4.1.1) for statistical 
analysis. Sequence reads with a total of 9043 species were taxonomically classified into 66 phyla, 130 classes, 261 orders, 
584 families, and 2477 genera. Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were found the Phyla in all 
samples. Analysis of QIIME output by PICRUSt and ß-diversity showed unique clusters and functional microbial commu-
nity structures. A total of 2961 ARGs were found that conferred resistance to multidrug, aminoglycosides, tetracyclines, 
elfamycins, and more. The classified ARG mechanism revealed significant distribution of virulence factors in bacterial cells. 
Transposes and transposon were highly correlated to ARG gene transfer. Co-occurrence network analysis showed several 
MGEs appear to use the same ARGs (intI and rho) and were dominant in all samples. Furthermore, ARGs are also highly 
correlated with bacteria like Campylobacter and Escherichia. This study enhances the understanding of antibiotic risk assess-
ment and provides a new perspective on bacterial assembly contamination and the functional prevalence of ARGs and MGEs 
with antibiotic resistance bacteria. Moreover, it raises public awareness because these contaminants put people’s lives at risk 
of acquiring bacterial infections. In addition, it can also help propose hybrid water treatment approaches.

Keywords Antibiotic resistance genes · Bacterial diversity · Environmental infections · Freshwater · Metagenomic · Mobile 
genetic elements · Virulence gene factors

Introduction

Antibiotic resistance genes (ARGs) and antibiotic-resistant 
bacteria (ARBs) are responsible for contaminating water 
resources and are significant threats to the environment 
and human health globally, which are discharged into the 
environment and present in water treatment plants (WTPs) 
in urban areas (Yoo et al. 2019). Despite the prevalence 

of ARGs, the dynamics of mobile gene elements (MGEs) 
in WTPs have rarely been studied in Singapore (Sahani 
et al. 2022). According to the environmental assessment 
report from the United Nations (https:// www. unwat er. 
org/) (UNEP 2021), antibiotic resistance is the most press-
ing worldwide public health issue. Horizontal gene trans-
fer (HGT) is an important mechanism by which genes are 
transferred from bacterial species to different recipients 
like plants, animals, and fungal species and becomes the 
major cause of pathogenic evolution and promotes ARGs 
and ARBs. Various reports identify WTP reservoirs as a 
possible source of ARGs and ARBs released into the envi-
ronment (Barancheshme and Munir 2018; Che et al. 2019; 
Alexander et al. 2020) because sewage from hospitals and 
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homes contains a huge amount of antibiotics and human 
disease-causing bacteria that are likely to act as discerning 
pressure on ARBs and resistance genes (RGs). In addition, 
the number of ARGs and ARBs may also be increased due 
to certain circumstances in the WTPs during the treatment 
process (Dávalos et al. 2021).

When it comes to addressing ARGs as a public health 
issue, it is still not obvious whether WTPs pose the high-
est microbiological hazard or risk (Fang et  al. 2014; 
Mohiuddin and Schellhorn 2015; Zhao et al. 2018). Cur-
rently, no comparison studies have been conducted in 
Singapore on the overall incidence, including a variety 
of distinct ARGs implicated in urban and ambient WTP 
processes (Mitchell et al. 2018). In spite of the fact that 
a lot of research has been conducted globally to deter-
mine the differences in abundance and diversity of ARGs 
and MGEs, studies are still lacking to show antibiotic 
contaminants are the result of urban and ambient WTP 
activities (White et al. 2016; Fang et al. 2019; Palermo 
et al. 2019; Chopyk et al. 2020). Indeed, there are still 
questions about which ARGs are significant for bacterial 
populations to acquire and exchange via MGEs (Sapar-
baevna Alexyuk et al. 2017). Hence, when it comes to 
understanding the diversity and composition of micro-
bial communities in environmental samples, metagen-
omic approaches are considered the most reliable and 
cost-effective methodologies (Grant 2022; Shilpa et al. 
2022). Therefore, metagenomics can be applied to bet-
ter understand the variation in ARGs and MGEs profiles 
(Meneghine et al. 2017).

The main aim of this study is to investigate the ARGs, 
MGEs, and virulence factors in urban freshwater sam-
ples using metagenomic analysis and further identify the 
resistance mechanisms and bacterial contamination. In 
addition, the comparative analysis of functional observed 
bacterial operational taxonomic units (OTUs) competen-
cies is anticipated in the co-occurrence network. The 
fundamental significance of this study is to raise aware-
ness in the population who drinks freshwater about the 
potential host and bacterial interactions because these 
contaminants are putting their lives at risk of acquiring 
antibiotic resistant bacterial infections and other viral 
diseases.

Method

Data samples

This study utilizes eight paired (forward and reverse 
reads) environmental metagenome data samples associ-
ated with the antimicrobial resistance bio project of urban 
freshwater samples. All raw data samples were collected 

and registered by the National University of Singapore 
and are freely available in the online repository (https:// 
www. ncbi. nlm. nih. gov/) with the accession number 
(PRJNA400857). An initial study about the parameters 
of the water samples can be found online in the same 
repository with the accession number (PRJEB30238). 
In addition, this study provides further bioinformatics 
pipeline analysis of environmental bacterial interactions 
with human health on raw data.

Bioinformatics analysis preprocessing

For subsequent bioinformatics analysis, Knead Data 
software was used for quality control on the Fastq raw 
samples based on Trimmomatic and Bowtie2 de-hosting 
(Kumar Awasthi et al. 2020). The results of the Knead 
Data were used to identify the cumulative effects and 
data quality control coherence as well as to cluster the 
tags into OTUs based on similarity indexes (Brown et al. 
2017; Sohail et al. 2019a, b). Kraken2 software was uti-
lized further to assign the OTUs taxonomic ranks (Yang 
et al. 2021), and diversity calculations were done via R 
software (v4.1.1) (Liu et al. 2021; Mammola et al. 2021). 
In addition, Phyloseq was used to perform the alpha 
and beta diversity based on the taxonomic OTU ranks 
(Arenas et al. 2021; Vieira and Pecchia 2021). FMAP 
software was used further to compare and annotate the 
reads with an ARG database called CARD to determine 
the resistance of ARGs to antibiotics like aminoglyco-
sides, tetracyclines, elfamycins, cycloserine, quinolones, 
cephalosporins, isoniazid, lincosamildes, bicyclomycins, 
fosfomycin, fosmidomycin, multidrug, and peptide drugs 
(Danko et al. 2021; Yadav and Kapley 2021).

Metagenomic assembly and plasmid/chromosomal 
sequence

In total, eight clean WGS Metagenomics samples were 
submitted to the PATRIC genome assembly pipeline 
(v3.6.9) on the Illumina platform for assembly (Davis 
et al. 2020; Parrello et al. 2021). Rectifying bases, cor-
recting misassemblies, and filling gaps were all handled 
by the SPAdes (v3.12.0) assembler and Pilon (v1.23) 
(Antipov et al. 2020). Furthermore, the QUAST (v5.0.2) 
(Taş et al. 2021) was used to rate the quality of assem-
blies. Plasflow (Galaxy v1.0) was used to predict plas-
mid and chromosomal sequences from all metagenomic 
assemble contigs with the default parameters using 
trained neural network models with 96% accuracy on 
genomes and plasmid sequences (Bibi et al. 2021; Taş 
et al. 2021).

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Functional annotation of MAGs

Genes of interest and functional categorization were pre-
dicted using the PATRIC (v3.6.9) annotation pipeline with 
bacteria as the taxonomic target domain, employing the 
RAST toolkit (RASTtk) (Yousafi et al. 2021). The assem-
bly contigs of all samples were submitted to a pipeline with 
unique genome identifiers assigned to them, and the genetic 
codon for translation of most bacteria and bacteriophages 
was used to call functional features. The KEGG database 
was mapped for each annotated feature to anticipate the 
dataset's functional assignments (Bibi et al. 2019; Biswas 
et al. 2021).

The BLASTP and k-mer-based detection methods were 
used to identify and quantify the resistome profiles of 
metagenomic data after annotating them (Saparbaevna Alex-
yuk et al. 2017; Yadav and Kapley 2021; Danko et al. 2021). 
This was done to facilitate the detection and quantification 
of resistome profiles of metagenomic data. To provide anti-
biotic resistance, virulence factors, known drug targets, and 
classification of the detected ARGs in all samples into differ-
ent mechanism categories, PATRIC BLASTs were utilized 
for all genes, including genes known in the genome against 
specialty gene databases like ARDB, NDARO, CARD, and 
PATRIC AMR-related curation (Yousafi et al. 2021). Fol-
lowing the analysis and measurements of ARGs’ frequency 
and relative distribution, the abundances of different resist-
ance mechanisms were tallied by merging the abundances of 
ARG subtypes associated with a specific resistance mecha-
nism category. All metagenomic assembled contigs were 
combined to determine the percentage and proportion of dif-
ferent ARG types on the plasmid, chromosomal, and unclas-
sified sequences (Antipov et al. 2020; Davis et al. 2020; 
Danko et al. 2021; Parrello et al. 2021; Taş et al. 2021).

Statistical analyses

R (v4.1.1) and SPSS (v28.0) software were used to analyze 
the data, and graphics were further created with GraphPad 

Prism (v8.0.2), and p-values represent a two-sided statisti-
cal test (Sohail et al. 2019a, b; Liu et al. 2021; Taş et al. 
2021). To investigate the association between ARG sub-
types and bacterial species, Spearman’s correlation analysis 
was conducted using the R software package called Hmisc 
(v4.6) (Frank 2021) and Psych (v2.1.9) (Revelle 2021). A 
co-occurrence network was generated using Gephi network-
building software (v0.9.2), for which we chose pairs where 
the correlation coefficient was (≥ 0.4) and the p-value was 
(≤ 0.05) (Yuan et al. 2021). Prior to statistical analysis, the 
Plasflow result’s bar chart was used to calculate the ratios of 
various ARG types found on the plasmid, chromosomal, and 
unclassified sequences, including the frequency and relative 
distribution of ARG types across all datasets. In addition, 
heatmaps and circos plots were visualized by using the Gal-
axy tool (Rasche and Hiltemann 2020).

Results

Data quality control and assembly assessment

This study analyzed a total of eight paired environmental 
metagenomic urban freshwater data samples with a total 
number of 15,203,491 sequence reads. After filtering the 
quality control of raw data with the Fastq criteria, we were 
able to obtain a dataset consisting of a total (10,817,393; 
71.15%) high-quality sequence reads, including 10.75% in 
S1, 8.57% in S2, 12.66% in S3, 17.45% in S4, 21.31% in S5, 
10.83% in S6, 14.81% in S7, and 3.63% in S8. The quality 
control comparison information of raw and filtered reads is 
presented in Table 1 with the total assembly size in kilobytes 
(kb) and genome length in base pairs (bp) of each sample. 
Furthermore, the graphical presentation of raw/filtered data 
quality done by MultiQC is present in the supplementary 
file (section-I).

All eight metagenomic assembly genomes (MAGs) con-
tained a total of 8827 contigs, each with a minimum number 
of 300 bp per contig. The average short-read coverage was 

Table 1  Samples information with their average length, genome length, and assembly size

Samples Samples ID Total reads Classified reads Avg length Assembly size 
(in kb)

Genome length (in bp)

SRR5997540 S1 1,284,460 1,162,657 183.90 12,464 12,382,321
SRR5997543 S2 2,095,861 926,931 186.80 6806 6,968,361
SRR5997544 S3 2,194,503 1,369,213 186.30 2572 2,633,599
SRR5997546 S4 2,377,924 1,887,852 191.00 5056 5,176,671
SRR5997548 S5 2,815,510 2,304,889 187.80 3953 4,047,347
SRR5997549 S6 1,896,447 1,171,043 185.00 666 681,446
SRR5997550 S7 2,078,551 1,602,187 185.20 4209 4,309,853
SRR5997552 S8 460,235 392,621 189.40 666 681,446
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employed for all datasets, including the long-read coverage, 
scaffolding reads, and average GC content. The assembly 
showed high quality in terms of contig length of scaffold 
L50, coarse, and fine consistency as percentages. Quality 
assessments demonstrated that each genome has the best 
quality and a high probability of containing more anno-
tated features and ARGs when BLAST against the curated 
databases.

Bacterial abundance and diversity assessment

A total of 9043 bacterial species OTUs were found in the 
dataset. Table 2 shows the percentage of bacterial reads cat-
egorized at each level of taxonomic classification, including 
Kingdom, Phylum, Class, Order, Family, Genus, and Spe-
cies. For the co-occurrence network analysis, we focused 
on the environmental homogeneous bacterial categorization 
of classes, families, genera, and species, whose taxonomic 
abundance bar chart is provided in the supplementary file 
(section-II). Figure 1 creates by the Krona chart library by 
merging the assembly of all samples, which shows Proteo-
bacteria has a higher percentage in all samples than Ter-
rabacteria. It is useful to look over the various taxonomic 
classifications and compare the abundance of OTUs accord-
ing to the Kraken confidence scores (Mreyoud et al. 2022). 
Furthermore, all the remaining classification levels of taxo-
nomic bar charts are included in the supplementary file (sec-
tion-III) with their percentage counts for the top 10 bacterial 
distributions in each sample.

The complexity of an organism’s community is intui-
tively perceived as diversity in the ecological sense (Yousafi 
et al. 2021). The Shannon and Simpson indices were used 
in this study to assess the alpha diversity within a single 
sample, and they were based on the number and relative 
abundance of taxa at various ranks (e.g., species). The lower 
the bacterial diversity, the higher the Simpson index will be 
(Yuan et al. 2021). We found that the Shannon and Simp-
son diversity percentages for each bacterial species in each 

data sample were statistically different by utilizing a confi-
dence interval (P ≤ 0.05), as shown in Table 2. In addition, 
QIIME software (v1.8) assessed beta diversity to determine 
the degree to which two communities differ in terms of 
beta diversity. It was shown that species complexity differs 
between communities based on Bray–Curtis’s metrics that 
calculate the sum of smaller numbers for species in each 
community divided by the sum of all counts in each com-
munity. Samples were subjected to beta diversity to explain 
the distribution patterns of two communities in terms of 
diversity, which was presented in the supplementary file 
(section-IV).

Evaluation of functional genome annotations

All MAGs were included for the annotated features in the 
RASTtk system, which included proteins with functional 
assignments and Enzyme Commission (EC) numbers as 
well as Gene Ontology (GO) and KEGG pathway mappings 
(Gabashvili et al. 2022; Wu et al. 2022). Two types of pro-
tein families, namely, PLFams and PGFams, were annotated 
from the PATRIC database, which was also included in the 
annotated features (Baniya and Digennaro 2021).

ARG abundance and diversity assessment

The ARG abundances in each sample are shown in Fig. 2. 
Per sample distribution, the average abundance of ARGs was 
calculated as follows: (6.28 ×  10−2; for S1), (1.21 ×  10−2; for 
S2), (5.24 ×  10−2; for S3), (1.0 ×  10−1; for S4), (3.21 ×  10−2; 
for S5), (0.79 ×  10−3; for S6), (1.36 ×  10−2; for S7), and 
(1.0 ×  10−1; for S8), respectively. It was found in all samples 
that mostly ARGs accounted for Aminoglycoside, Elfamy-
cins, Quinolone, and Cycloserine, with the remainder being 
made up of Peptide antibiotics, Tetracycline, Isoniazid, Mul-
tidrug, and unclassified ARGs. In addition, aminoglycoside 
was shown to be in high abundance in S1 with a ratio of 
(5.17 ×  10−2) compared to Cycloserine with a difference 

Table 2  Bacterial taxonomic 
classification and diversity 
percentage index including 
Shannon and Simpson

Sample ID Classification percentage Diversity percentage at the 
species level

Kingdom Phylum Class Order Family Genus Species Shannon index 
(H)/(H/LN (N))

Simpson 
index (1-D)

S1 90.52 89.73 88.58 87.74 79.25 76.91 65.05 5.18/0.59 0.97
S2 44.22 42.50 40.09 39.69 34.34 37.53 34.03 6.42/0.72 0.97
S3 62.39 60.70 58.27 57.30 53.85 51.77 45.10 6.80/0.76 0.99
S4 79.39 78.45 77.29 76.52 70.96 72.94 66.00 5.25/0.59 0.96
S5 81.86 80.68 77.31 71.43 67.31 65.46 50.77 5.88/0.66 0.98
S6 61.75 60.13 57.91 56.77 53.19 50.92 44.20 6.86/0.77 0.99
S7 77.08 75.98 73.63 72.92 57.75 69.19 61.57 5.61/0.64 0.95
S8 85.31 84.46 83.24 82.72 71.86 78.07 70.82 5.05/0.59 0.97
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Fig. 1  Krona bacterial distribution pie chart of all samples together

Fig. 2  Abundance distribution 
of ARG types
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of a bit lower in abundance ratio of (3.56 ×  10−2) in S2. 
Further, in sample 3, ARG types occurred with a similar 
abundance ratio of (3.24 ×  10−2), namely, Aminoglycoside, 
Elfamycins, and Quinolones. The lowest in the abundance of 
ARG types was Lincosamides, and Cephalosporins were a 
bit lower among all with a ratio of (2.27 ×  10−2). The abun-
dance clustered heatmap of ARGs with each sample was 
presented in Fig. 3, which shows the abundance of 14 ARG 
types detected was calculated based on summing the cov-
erage of ARG subtypes belonging to the same ARG type. 
Abundance values were transformed using log (x + 1), and 
clustering was based on Euclidean distances, which illustrate 
three distinct groups of antibiotic resistomes in the urban 
freshwater samples. This study found that the rise and reduc-
tion in the abundance of ARGs occurred between compara-
tive urban freshwater samples, with aminoglycoside being 
the most dominant.

ARG proportion assessment in plasmid and chromosomal 
sequence

Prior to the contigs process from the assembly, ARG types 
were classified for the chromosomes, plasmid, and unclassi-
fied sequences. Our results showed that chromosomal con-
tigs had a substantially higher percentage of ARG types than 
plasmid and unclassified contigs with ARGs, according to 
ARG detection. In addition, unclassified encoded in plasmid 
and multidrug were proven to be the most dominant encoded 
in chromosomal contigs in terms of abundance of ARG sub-
types belonging to each ARG. Bicyclomycins have ARGs 

encoded only on chromosomes and unclassified contigs, 
with a higher proportion on chromosome, while ARG counts 
on Tetracyclines were much dominant in plasmid contigs. 
Figure 4 shows the relative abundance of ARGs, where the 
genes conferring resistance to unclassified (25%) are the 
most prevalent in plasmids. Further, multidrug (17%), Ami-
noglycoside (10%), Fosmidomycin (7%), Elfamycins (6%), 
Cycloserine (6%), Quinolones (6%), Isoniazid (5%), Bicy-
clomycins (4%), and Fosfomycin (3%) being more frequently 
encoded in chromosomes. Moreover, our results showed that 
ARGs found in plasmids and chromosomes were in different 
proportions, and some ARG types were found on unclassi-
fied chromosomes.

Categories of ARG resistance mechanism

In this study, the blast results were done on three major data-
bases, namely, CARD, NDARO, and PATRIC AMR-related 
curation databases. In our results, the antibiotic resistance 
mechanism was classified into five major categories, namely, 
efflux pump, antibiotic inactivation, antibiotic target pro-
tection, antibiotic target replacement, and target modifying 
enzyme. In addition, Fig. 5 shows the unclassified catego-
ries of mechanisms as others. From our results, an antibiotic 
efflux pump is detected to be the dominant resistance mecha-
nism in all samples, followed by antibiotic inactivation and 
the unclassified.

The percentage abundance of ARG antibiotic subtypes 
for all categories of the resistance mechanism was counted 
as (28% for S1, 1% for S2 and S3, 19% for S4, 33% for 

Fig. 3  Clustered heatmap of 
ARG types
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S5, 2% for S6, 3% for S7, and 14% for S8), respectively. 
It shows that S5 has more efflux pumps, antibiotic inac-
tivation, and unidentified bacteria than any other. Genes 
associated with multiple drug resistance (MDR) are more 
prevalent in samples S1, S4, and S5 and are also included 
in the antibiotic efflux pump subclass. Further in antibi-
otic inactivation, the beta-lactam resistance gene was more 
prevalent in S4, S5, and S8 and aminoglycoside RGs in 
S1. Efflux pumps transport proteins in microorganisms 
that allow them to manage their internal environment by 
eliminating toxins and are frequently related to multiple 
drug resistance.

Virulence gene assessment related to different factors

A total of 197 virulence genes were examined in this study 
after being compared to three major databases, namely, 
VFDB, vectors, and PATRIC_VF based on a high sequence 
similarity technique using BLAST. The demonstrated results 
in Fig. 6 show that sample S1 has the highest abundance of 
virulence genes compared to other samples, with genes in 
virulence and adherence being most dominant aside from 
the unclassified. Further, analysis showed that S8 had no 
virulence genes. Escherichia coli and Salmonella enterica 
have the most virulence genes in samples S1, S5, S6, and S7; 

Fig. 4  The proportion of ARG 
types located on plasmid, 
chromosomal, and unclassified 
sequences

Fig. 5  Percentages of ARG 
resistance mechanism with 
subtypes

Fig. 6  Number of virulence 
genes relative to different viru-
lence factors
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Mycobacterium tuberculosis in S2; and Salmonella enterica 
in S4. The common genes that were shared between S1, S4, 
S6, and S7 have the same virulence factors as rfba (tran-
sketolase) in Salmonella enterica (Gram-negative bacteria) 
and tktA (glucose-1-phosphate thymidylyltransferase) in 
Escherichia coli (Gram-negative bacteria). For adherence, 
S1 exclusively contained virulence genes from Escherichia 
coli, while sample S7 only contained virulence genes from 
Pseudomonas aeruginosa (an encapsulated Gram-negative 
bacteria) and no further shared genes between both samples. 
Moreover, in the regulation of gene expression virulence 
factor, the distributed genes in S1, S2, S3, S5, and S6 were 
found in Escherichia coli, Shigella flexneri, Salmonella 
enterica, and Mycobacterium tuberculosis with the domi-
nant gene called hfg (RNA-binding protein).

Expression level of MGEs and MRGs

In this study, four major types of MGEs and two metal resist-
ance genes (MRGs) were discovered from the entire WGS 
assembly samples and the expression rate of each sample 
was then calculated as shown in Fig. 7. Transposase was 
the most highly expressed in S1, S4, S7, S5, S8, and S6, 
followed by transposon in S1, S4, S8, and S5 as compared 
to other MGEs. In each sample, MRGs were found to be 
present, with zinc being the most prevalent. S1, S4, S5, S7, 
and S8 are the only ones that contain ions, according to the 
results. In addition, S1 and S5 have higher concentrations 
of Ion.

Microbial gene classifications and co‑occurrence analysis

A subsystem is called a set of proteins that implements a 
structural biological complexity and subsystems specific to 
each genome which was included in the PATRIC annotation 
process (Davis et al. 2016). Table 3 depicts an overview of 
subsystem classification for all samples including genes. The 
classification assessment discovered a total of genes (8256 
in metabolism), (1770 in virulence stress), (3690 in protein 

process), (3211 in energies), (1343 in membrane transport), 
(1359 in the cellular process), (1234 in DNA process), (841 
in RNA process), (841 in Cell envelope), (898 in RNA pro-
cessing), and (192 in cell signaling).

We investigated the co-occurrence patterns using a net-
work analysis approach among four categories, namely, 
antibiotics and their RGs; mobile elements and their RGs, 
ARGs, and MGEs; and ARGs and microbial taxa as shown 
in Fig. 8a–d. Spearman pairs of (p ≤ 0.05) and (r ≥ 0.4) 
were utilized for co-occurrence analysis patterns. In addi-
tion, the bacterial genus was considered for possible ARG-
type hosts based on co-occurrence results. We selectively 
studied the top 100 genes for the antibiotics and mobile 
elements based on their abundance and matched profiles 
respectively. As the fundamental focus of this study is 
human and environmental health, we have chosen the top 
homogenous bacteria and their highly associated species in 
all samples namely Campylobacter, Escherichia, Staphylo-
coccus, Streptomyces, Enterococcus, Bacillus, Leptospira, 
Listeria, Pseudomonas, Clostridium, Klebsiella, and Sal-
monella. The nodes were sized and colored on the fre-
quency ratios bases, and edges were colorized by weights 

Fig. 7  Expression level of 
MGEs and MRGs per assembly 
sample

Table 3  Information about microbial subsystems and gene classifica-
tion

Classification Subsystems Genes

Metabolism 156 8256
Stress response, defense, and virulence 61 1770
Protein processing 49 3690
Energy 43 3211
Membrane transport 42 1343
Cellular processes 26 1359
DNA processing 22 1234
Cell envelop 19 841
RNA processing 17 898
Miscellaneous 16 557
Regulation and cell signaling 7 192
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that occurred in correlation analysis. Figure 8a clearly 
shows that multidrug is highly influenced and correlated 
with ARGs in environmental samples followed by tetra-
cycline, cephalosporin, aminoglycoside, fosmidomycin, 
lincosamildes, quinolone, isoniazid, fosfomycin, bicyclo-
mycins, elfamycins, and peptide drugs. In addition, four 
mobile elements were analyzed in Fig. 8b, namely, inte-
grase, transposes, recombinase, and transposon. The fig-
ure clearly shows that transposes have a huge correlation 
frequency with MGEs in environmental samples followed 
by transposon, integrase, and recombinase. Further, ARGs 
and MGEs were analyzed in Fig. 8c and show Rit (A, B, 
C), Rho, Tin, Xer (C, D), Kat, Phage, Tet (M, Q, W, X), 

EF-TU, SugE, QnrB, MdtM, and Int are highly correlated 
genes followed by TEM, ACR , Tn, Gmet, Tra, Emr (D, 
G), OXA, dxr, Ddl, Alr, Erm, Emr, Mur, Qac, and Gdp. 
Moreover, Fig. 8d shows that homogenous microbial bac-
teria, namely, Campylobacter, Escherichia, Staphylococ-
cus, Streptomyces, Enterococcus, Bacillus, Leptospira, 
Listeria, Pseudomonas, Clostridium, Klebsiella, and 
Salmonella are correlated with ARGs (rho, Ef-Tu, Mur, 
Emr, APH, Erm, Alr, Kat, Acr, Tet, Bcr, Oxy, TEM, dxr, 
Qac, Qnr, Tol, AAC , gid, Mdt, and Cme) in environmental 
freshwater samples. The raw formation of co-occurrence 
network analysis data is present in the supplementary file 
(section-V) with their weights and ratios.

Fig. 8  Co-occurrence network analysis pattern
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Discussion

WTPs are known as reservoirs of ARGs worldwide, and 
antibiotic virulence is a hot topic in infectious disease 
research (Sohail et al. 2018; Uba Muhammad et al. 2018). 
Literature is available to support in silico studies for the 
identification of virulence factors caused by multidrug-
resistant pathogenic agents (Farman et al. 2019). Moreo-
ver, it demonstrated that ARGs and MGEs are commonly 
found in the water resources of remote areas as well, so it 
is time to go for the extensive metagenomics analysis of 
different samples from different regions around the world 
to reduce the significant issue of antibiotic resistance (Sze-
keres et al. 2018). This study was conducted to investigate 
and identify bacterial contamination, antibiotic resistance, 
MGEs, virulence factors, and the resistance mechanism in 
urban freshwater samples. It is noted that WTPs are now 
hotspot research topics for the identification of ARGs and 
ARBs.

The percentage of bacterial reads categorized at each 
level of taxonomic classification was studied, and the co-
occurrence network explained the environmental homoge-
neous bacterial categorization of three important levels: 
Family, Genus, and Species. To explain the taxonomic 
abundance, a bar chart was generated in the supplementary 
file (section-II, III). Samples were subjected to beta diver-
sity to explain the distribution patterns of two communi-
ties in terms of diversity as shown in the supplementary 
file (section-IV). The ARG abundances in each sample are 
demonstrated in Fig. 2. Results depicted that the profiles 
of major ARGs that confer aminoglycosides, tetracyclines, 
elfamycins, cycloserine, quinolones, cephalosporins, iso-
niazid, lincosamildes, bicyclomycins, fosfomycin, fosmi-
domycin, multidrug, and peptide drugs resistance were 
abundant in Singapore urban freshwater. These antibiotics 
are among the most commonly prescribed drugs in Sin-
gapore and are among the major pharmaceutical products 
found in the WTPs (Goh et al. 2020). In addition, ARGs to 
tetracyclines, cycloserine, aminoglycosides, and multidrug 
are frequently detected in WTPs worldwide, along with 
those conferring resistance to fosmidomycin and tetracy-
clines. Because of the strong sorption of the tetracycline 
and fosmidomycin antibiotics, their mobility in the envi-
ronment may be facilitated by transport with freshwater 
(Anh et al. 2021).

The relative abundance of ARGs for each sample was 
calculated and shows the significant genes conferring 
resistance to unclassified as (25%) which found as the 
most prevalent in plasmids. Further, multidrug (17%), 
Aminoglycoside (10%), Fosmidomycin (7%), Elfamycins 
(6%), Cycloserine (6%), Quinolones (6%), Isoniazid (5%), 
Bicyclomycins (4%), and Fosfomycin (3%) being more 

frequently encoded in chromosomes. Moreover, our results 
show that ARGs found in plasmids and chromosomes were 
in different proportions, and some ARG types were found 
on unclassified chromosomes as in Fig. 4. In bacteria, the 
plasmid and chromosome differentiate by the circular rep-
resentation of double-stranded extra-chromosomal DNA 
structure. Relatively high multidrug resistance in aerobic 
processes has also been reported and potentially explained 
by the presence of many microstressors in freshwater, 
which select for bacteria with multiple defense mecha-
nisms and dissemination of their resistance through HGT. 
Multidrug with high solubility and chemical stability can 
persist in the environment for a long period of time, result-
ing in a high abundance of ARGs in the WTPs (Akhil et al. 
2021). Therefore, tetracycline and multidrug resistances 
are frequently detected in effluent and surface water, indi-
cating a general resilience to the WTP which has a major 
impact on freshwater after treatments.

In our results, the antibiotic resistance mechanism was 
classified into five major categories, namely, efflux pump, 
antibiotic inactivation, antibiotic target protection, anti-
biotic target replacement, and target modifying enzyme 
(Fig. 5). This mechanism is associated with the disruption 
of a significant process of bacterial cells that are actually 
playing a role in bacterial division and growth of bacteria. 
The bacteria are actually associated with the virulence fac-
tors; therefore, the sample S1 has the highest abundance of 
virulence genes compared to other samples, with genes in 
virulence and adherence being most dominant aside from 
the unclassified samples (Fig. 6). Transposons are associ-
ated with antibiotic resistance mechanisms and are helpful 
in the transfer mechanism of bacterial genes. Figure 7 dem-
onstrates transposase was the most highly expressed in S1, 
S4, S7, S5, S8, and S6, followed by transposon in S1, S4, S8, 
and S5 as compared to other MGEs. In each sample, MRGs 
were found to be present, with zinc being the most prevalent. 
S1, S4, S5, S7, and S8 are the only ones that contain Ions, 
according to the results. In addition, S1 and S5 have higher 
concentrations of Ion. The zoonotic bacteria and the patho-
gens have been widely studied in the selected sample and 
it is noticed that multiple bacteria such as Campylobacter, 
Escherichia, Staphylococcus, Streptomyces, Enterococcus, 
Bacillus, Leptospira, Listeria, Pseudomonas, Clostridium, 
Klebsiella, and Salmonella are highly correlated with ARGs 
(rho, Ef-Tu, Mur, Emr, APH, Erm, Alr, Kat, Acr, Tet, Bcr, 
Oxy, TEM, dxr, Qac, Qnr, Tol, AAC , gid, Mdt, and Cme) 
in the selected environmental freshwater samples (Fig. 8).

According to previous studies (Kori et al. 2019; Yoo 
et al. 2020; Zhang et al. 2020; R. Zhao et al. 2020; Ahmad 
et al. 2021; Mukherjee et al. 2021), there is growing concern 
about ARGs and MGEs in the WTP due to the prospect that 
anaerobic digestors could serve as a new ARB source. This 
point is worth mentioning because this study used samples 
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from Singapore’s freshwater treatment plant. In addition, 
previous studies have highlighted that fresh drinking water 
contain bacteria that pose a threat to human health. Fur-
thermore, this study focused on the homogenous bacteria 
like campylobacter, Escherichia, Staphylococcus, Strepto-
myces, Enterococcus, Bacillus, Leptospira, Listeria, Pseu-
domonas, Clostridium, Klebsiella, and Salmonella. The 
top homogenous bacteria list was published by the World 
Health Organization (WHO), and can be found at (https:// 
www. who. int/ news/ item/ 27- 02- 2017- who- publi shes- list- of- 
bacte ria- for- which- new- antib iotics- are- urgen tly- needed). 
From our perspective, freshwater is a significant reservoir 
of ARBs, and water treatment methods may be employed in 
the future to minimize the amount of this reservoir of resist-
ance. The primary focus of this study was to understand the 
bacterial community structure and functional characteristics 
of ARGs and MGEs associated with Singapore’s freshwater 
treatment plant. However, the biotechnological applications 
of novel functional traits were also discovered as a result of 
this metagenomic study. This study demonstrated a compre-
hensive in silico analysis of ARGs and their relative abun-
dance with respect to diversity involving bacterial communi-
ties in urban freshwater. The spread and awareness of these 
antibiotic-related diseases are very important. Hence, our 
study will add knowledge to antibiotic research and could be 
helpful for future understanding of antibacterial resistance 
and its management in freshwater sediments.
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